You are viewing a single comment's thread from:

RE: A dark side brighter than expected - a reappraisal of composite dark matter

in StemSocial2 years ago

This is what I like about theories of this type, in which one seeks to explain events that are of great curiosity to many, but still not fully understood by the vast majority.

Seeking to explain how particles, some of which are not yet certain to exist, interact in -presumably- invisible matter?

Mentally thinking about this requires not only a knowledge of matter but a very advanced degree of abstraction?

I still wonder if it will ever be possible to have an answer that is correct and can satisfy everyone regarding the origin of the cosmos, of the universe, of what inhabits it. Do you think there will ever be a concrete answer?

Sort:  
 2 years ago  

Seeking to explain how particles, some of which are not yet certain to exist, interact in -presumably- invisible matter?
Mentally thinking about this requires not only a knowledge of matter but a very advanced degree of abstraction?

This is precisely what we do when we study new phenomena in particle physics. We design new theories addressing one or the other problems of the Standard Model. Once the theory has been designed (we have guiding principles for this), which means that we can write the associated equations, then we can use it to make predictions. And next, in a second step we can compare predictions with data. On the other hand, we can also predict what future experiments not existing yet should be able to do to discover new things.

I still wonder if it will ever be possible to have an answer that is correct and can satisfy everyone regarding the origin of the cosmos, of the universe, of what inhabits it. Do you think there will ever be a concrete answer?

The answer may be correct in some domain.

For example, there is no need to use special relativity to describe the motion of a car. Newtonian mechanics works fine. However, Newtonian mechanics does not work to describe the motion of particles traveling close to the speed of light. This does not make Newtonian mechanics incorrect. It is just that we cannot use it when objects move too fast.

We can say the same with the Standard Model. At low energies, it works fine. At higher energies, we need to consider an extension of it (whose effects at low energies are negligible).

Does it clarify?

Of course it is. Much more clearly, it is a matter of matching theories to the factors being studied, or seeing if the elements being studied, and the factors involved in a particular event fit a certain theory and can be used.
Using (logical, abstract, and more) thinking as a basis for everything... Interesting. Thank you for your response.

 2 years ago  

Of course it is. Much more clearly, it is a matter of matching theories to the factors being studied, or seeing if the elements being studied, and the factors involved in a particular event fit a certain theory and can be used.
Using (logical, abstract, and more) thinking as a basis for everything...

It is indeed a virtuous circle: experiments -> observations -> concepts -> modelling -> predictions -> experiments -> ...

Thank you for your response.

You are welcome!