[quiz 61] 25마리의 말

in #kr-quiz7 years ago

퀴즈 61 25마리의 말


25마리의 말이 있다.

한번에 5마리씩 경주가 가능하다고 할 때

가장 빠른 말 3마리를 찾아내기 위해 경주를 최소 몇번 해야 하는가?


참가방법


본 글을 읽고 보팅 후 댓글로 답을 달아 주시면 됩니다.

댓글을 읽고 참신한 댓글[굳이 정답일 필요가 없습니다]에 1-5프로로 보팅 하도록 하겠습니다.

답을 맞추는 것이 아니라 다양한 생각을 해보는 것이 퀴즈의 목적입니다.


많이 댓글 달아주세요~

참고문헌들


퍼즐과 함께하는 즐거운 논리, 레이먼스 M. 스멀리언 지음

사고력을 키워주는 논리퍼즐, 레이먼스 M. 스멀리언 지음

범죄수학1,2

재미있는 영재들의 수학퍼즐 1,2

뉴턴 - (수학퍼즐 걸작 80, 엄선 수학퍼즐 2, 수학퍼즐과 논리 패러독스)

수학참고서

Math Letter

멘사 퍼즐 시리즈

Sort:  
Loading...

다섯마리의 말씩 예선전 다섯번에 결승전 한번이면 가장 빠른말을 찾을수있겠네요.^^
정답은 여섯번의 경기입니다.

아!말 세마리 찾는거였네요.어쩐지....ㅡ

위 방법으로 계속해서 열여덟번이요^^;;

ㅠㅠ 1등만 뽑아서 결승전을 했다면 그 뒤 7번째 어떤 말을 경주하는가가 중요해요!

  1. 5마리씩 5경기를 해서 각 경기의 1~3등까지 15마리
  2. 경기 1~3등은 각각 다른 조로 편성해서 조에 이전 경기 등수가 고르게 섞이도록 조절한 뒤 3경기
  3. 각 경기 1~3등 9마리에서 2경기
  4. 3경기의 각 1~3등해서 6마리. 1~3 과정에서 어느정도 순위가 정해졌을텐데 애매한 애들끼리 마지막 1경기

그래서 11경기는 치뤄야하지 않을까 싶네요 ㅎ

1번과 2번 동일
3번. 9마리가 남았을 때 5마리만 경주해서 2마리 탈락시키기, 7마리가 남았을 때 5마리만 경주해서 2마리 탈락
같은 방법으로하면 9->7->5->3 까지 3번 걸림
총 5+3+3=11
방법을 좀 바꿔봤습니다
이 방법에서는 2번에서 말을 섞지 않아도 문제가 없겠네요

2번을 좀 더 생각해 보시면, 일단 1등끼리만 경기를 하였을 때 그 그룹에서 4등, 5등 말이 속한 그룹들의 말을 제외할 수 있습니다.

1등 그룹들의 말의 경주를 통해 가장빠른 1등 말을 가려낼 수 있고 그 외의 말들을 통해 거기서 3등 안에 들 수 없는 경우의 수를 제외하면 딱 5마리의 말이 나오게 됩니다. 그 말들을 가지고 경기를 한번 더하면 됩니다

이 문제는 매우 유명한 문제로 [구글 인터뷰에 잘 나온다네요]

좀 더 자세한 풀이를 원하시면 아래 링크를 참조하시면 될 것 같습니다.

https://www.glassdoor.com/Interview/25-horses-5-race-tracks-How-many-races-you-have-to-run-to-select-top-5-horses-QTN_136645.htm

사실 이것보다 이 사진 한장이 모든걸 설명해줍니다.

옆으로 눕혀야되는데;;

이 문제는 참고문헌을 비롯하여 여러 다른 책에서도 찾을 수 있는 문제인데, 위 사진은 박종하 님의 수학, 생각의 기술에서 가져왔습니다.

기본적으로는 @feelsogood 님과 같은 생각입니다.
특정 조의 3마리가 최상위 말일 수도 있으니 각 조마다 3마리를 뽑아야겠지요.
하지만 마지막 6마리가 남았을 때도 1마리를 제외한 5마리가 경기를 하고 상위 3마리+나머지 한마리가 마지막 경기를 해야 한다고 생각합니다. 그래서 12경기가 필요한 것 같습니다.

헌데, 기록을 잴 수 있으면 다섯마리씩 5경기만 해서 상위 기록 3마리만 뽑으면 훨씬 쉽겠지요? ㅎㅎ

ㅎㅎ 1등끼리 경주를 하여 나온 등수를 가지고 생각해보면, 각 조마다 3마리를 뽑지 않아도 됩니다! ㅎㅎ

그러네요~ @choim 님께 많이 배웠습니다^^

아 무슨멘션인가 하고 왔더니.. ㅋㅋ

전 베오페드님 문제가 항상 너무 재밌더라구요!

특히 가끔 난이도 높은거 나오면 하루종일 생각나고 ㅋㅋ

즐거운 하루 되세요~~!!

"속도 측정이 가능한지"에 대한 전제가 명확하지 않네요.
만약 경기에 참가하는 말의 속도를 측정할 수 있다면, 5마리씩 5번이면 가능하겠지요.
만약 속도를 측정할 수 없고 오직 순위만을 알 수있을 뿐이라면, 위에서 말한 방법 중에서 @feelsogood님의 방법이 좋을 것 같네요.

제가 글을 쓰는 동안 이미 다른 분이 제 의견과 동일한 의견을 썼군요.

모든 말의 속도가 측정가능하면 사실 5번이면 끝나겠죠 ㅎㅎ

여담으로 1등말만 속도가 측정가능하다고 하면 좀 더 재미있는 문제로 만들 수 있습니다 ㅎㅎ
결국 경의의 수 문제이라 좀 지저분해지겠지만요.

!!! 힘찬 하루 보내요!
https://steemit.com/kr/@mmcartoon-kr/5r5d5c
어마어마합니다!! 상금이 2억원!!!!!!