News-Medical
Search
Menu
New optical ultrasound needle could help visualize heart tissue during keyhole procedures
Download PDF Copy
Advertisement
December 1, 2017
Heart tissue can be imaged in real-time during keyhole procedures using a new optical ultrasound needle developed by researchers at UCL and Queen Mary University of London (QMUL).
The revolutionary technology has been successfully used for minimally invasive heart surgery in pigs, giving an unprecedented, high-resolution view of soft tissues up to 2.5 cm in front of the instrument, inside the body.
Doctors currently rely on external ultrasound probes combined with pre-operative imaging scans to visualize soft tissue and organs during keyhole procedures as the miniature surgical instruments used do not support internal ultrasound imaging.
For the study, published today in Light: Science & Applications, the team of surgeons, engineers, physicists and material chemists designed and built the optical ultrasound technology to fit into existing single-use medical devices, such as a needle.
"The optical ultrasound needle is perfect for procedures where there is a small tissue target that is hard to see during keyhole surgery using current methods and missing it could have disastrous consequences," said Dr Malcolm Finlay, study co-lead and consultant cardiologist at QMUL and Barts Heart Centre.
"We now have real-time imaging that allows us to differentiate between tissues at a remarkable depth, helping to guide the highest risk moments of these procedures. This will reduce the chances of complications occurring during routine but skilled procedures such as ablation procedures in the heart. The technology has been designed to be completely compatible with MRI and other current methods, so it could also be used during brain or fetal surgery, or with guiding epidural needles."
The team developed the all-optical ultrasound imaging technology for use in a clinical setting over four years. They made sure it was sensitive enough to image centimeter-scale depths of tissues when moving; it fitted into the existing clinical workflow and worked inside the body.
Hi! I am a robot. I just upvoted you! I found similar content that readers might be interested in:
https://es.dotmed.com/news/story/40523