LIGAÇÃO QUÍMICA, IÔNICA, COVALENTE E METÁLICA.
Basicamente, duas forças de naturezas distintas atuam no interior da matéria: são as forças intermoleculares, isto é, entre moléculas, e as forças intramoleculares, que agem no interior dessas moléculas, entre dois ou mais átomos. As forças intermoleculares podem ser descritas, sucintamente, como Pontes de Hidrogênio ou Forças de Van der Waals. As forças intramoleculares são as famosas ligações químicas, que podem ser do tipo iônico, covalente ou metálico. O propósito deste texto é abordar aspectos referentes às forças intramoleculares, isto é, referentes às ligações químicas.
Sem nenhuma dúvida, ainda hoje as forças que atuam entre átomos representam um dos aspectos mais intrigantes de todo o estudo da química. Destas forças, as mais fortes são as ligações químicas, responsáveis pela união estável de átomos, resultando na formação de moléculas, sendo estas as bases constituintes de toda matéria que conhecemos.
As ligações químicas representam interações entre dois ou mais átomos, interações essas que podem ocorrer por doação de elétrons, compartilhamento de elétrons ou ainda deslocalização de elétrons. Cada um desses processos é caracterizado por uma denominação de ligação química. É importante, entretanto, salientar que a grande maioria das ligações não ocorre de modo a pertencer 100% a um determinado grupo. O que ocorre é determinado ligação apresentar propriedades intermediárias a um e a outro grupo. Mas esse aspecto intermediário raramente é abordado na literatura química, sendo utilizada a classificação predominante para a ligação química em questão.
De modo geral, como fora mencionado, pode ocorrer à doação e o recebimento de elétrons entre dois átomos, caracterizando uma ligação denominada de Ligação Iônica. Nessa ligação, predominam as forças eletrostáticas que atraem os íons de cargas opostas. A ligação iônica é a responsável pela formação de compostos iônicos, e ocorre entre um átomo metálico e um átomo não metálico, com doação de elétrons por parte do primeiro e recebimento de elétrons por parte do segundo.
Quando se combinam dois átomos que possuem uma mesma tendência de ganhar e perder elétrons, ocorre então a formação de uma Ligação Covalente. Sob essas condições, não ocorre uma transferência total de elétrons. Nesse processo, ocorre um compartilhamento de elétrons, aos pares. A ligação covalente, sempre entre dois átomos não metálicos, forma os compostos de natureza molecular, de modo a constituir uma molécula de natureza polar (ligação entre dois átomos diferentes) ou apolar (entre dois átomos iguais).
Já a Ligação Metálica traz um processo distinto. Os elétrons distribuem-se sobre núcleos positivos de átomos metálicos, formando uma nuvem eletrônica sobre toda estrutura da matéria formada, sendo esta a responsável pelas propriedades metálicas da matéria constituída.
NUVEM ELETRÔNICA
De um modo geral, os átomos dos metais apresentam somente 1, 2 ou 3 elétrons na camada de valência, e como essa camada se encontra afastada do núcleo atômico, atrai poucos elétrons. Como consequência disso, os elétrons tem a facilidade de escapar do átomo e transitar livremente pelo reticulado cristalino, que é uma estrutura geométrica formada pelo agrupamento de átomos metálicos. Nesse trânsito de elétrons, os átomos constantemente se transformam em cátions, ao perderem elétrons, ou voltam à forma de átomos nêutrons, ao ganharem elétrons. Assim, o metal seria um aglomerado de átomos imersos numa nuvem eletrônica.
A nuvem eletrônica forma uma espécie de eletrosfera única entre todos os átomos agrupados no retículo, de maneira que os elétrons possam se mover livremente e acabar estabilizando esses átomos. De acordo com tal teoria, então, a nuvem de elétrons livres (também chamada de mar de elétrons ou gás de elétrons) funciona com uma ligação metálica, estabelecendo a união entre os átomos de metais.
Esse modelo de nuvem eletrônica proposto explica algumas propriedades inerentes aos metais. São elas:
• Condutibilidade – quando um metal é aquecido ou recebe alguma carga eletrônica, ocorre um aumento da energia dos elétrons. Através da nuvem eletrônica, os elétrons livres passam essa energia uns para os outros rapidamente, o que torna os metais bons condutores de calor e corrente elétrica. Graças a essa importante propriedade, os metais são utilizados na fabricação de fios elétricos, principalmente.
• Elevados pontos de fusão e ebulição – a nuvem eletrônica forma uma ligação muito forte entre os átomos, conservando-os intensamente unidos. Logo, para essas ligações sejam restabelecidas e os metais passem do estado sólido para o líquido ou do líquido para o gasoso, é necessária uma grande quantidade de calor. Isso explica os altos pontos de fusão e ebulição dos metais. O tungstênio (W), por exemplo, deve ser submetido a uma temperatura de aproximadamente 3680 °C para se fundir, e devido a isso, é empregado na produção de materiais que precisam resistir a altas temperaturas, como os filamentos de lâmpadas.
• Maleabilidade e ductibilidade – as ligações metálicas apresentam a mesma intensidade para qualquer direção, por isso, a maioria dos metais podem sofrer alterações na sua forma sem que a estrutura cristalina seja destruída e mantendo a união entre os átomos. Em virtude dessa configuração, os metais sólidos podem ser reduzidos em fios, chapas e lâminas muito finas, que podem ser usadas na construção civil, na fabricação de veículos, eletrodomésticos, navios, trens, entre outas aplicações.
• Resistência à tração – a forte união entre os átomos metálicos os torna muito resistentes à tração, razão pela qual os metais são usados na fabricação de vergalhões, cabos de elevadores e de veículos suspensos.
REGRA DO OCTETO
A Regra do Octeto estabelece que os átomos dos elementos ligam-se uns aos outros na tentativa de completar a sua camada de valência (última camada da eletrosfera). A denominação “regra do octeto” surgiu em razão da quantidade estabelecida de elétrons para a estabilidade de um elemento, ou seja, o átomo fica estável quando apresentar em sua camada de valência 8 elétrons. Para atingir tal estabilidade sugerida pela Regra do Octeto, cada elemento precisa ganhar ou perder (compartilhar) elétrons nas ligações químicas, dessa forma eles adquirem oito elétrons na camada de valência. Exemplo:
Repare que os átomos de Oxigênio se ligam para atingirem a estabilidade sugerida pela Regra do Octeto. As diferentes cores de eletrosfera mostradas na figura nos ajudam a interpretar o seguinte:
- Átomos de Oxigênio possuem seis elétrons na camada de valência (anel externo na figura).
- Para se tornarem estáveis precisam contar com 8 elétrons, o que fazem então? Compartilham dois elétrons (indicado na junção dos dois anéis), formando uma molécula de gás Oxigênio (O2).
A justificativa para essa regra é que as moléculas ou íons tendem a ser mais estáveis quando a camada de elétrons externa de cada um dos seus átomos está preenchida com oito elétrons (configuração de um gás nobre). É por isso que os elementos tendem sempre a formar ligações na busca de tal estabilidade.
Existem exceções para a Regra do Octeto, alguns compostos não precisam ter oito elétrons na camada de valência para atingir a estabilidade, vejamos quais:
Berílio (Be)
Átomo capaz de formar compostos com duas ligações simples, sendo assim, estabiliza-se com apenas quatro elétrons na camada de valência.
Boro (B)
Forma substâncias moleculares com três ligações simples, ficando estável com seis elétrons na última camada.
Alumínio (Al)
É uma exceção à Regra do Octeto pelos mesmos motivos que o Boro, atinge a estabilidade com seis elétrons na camada de valência.
Hi! I am a robot. I just upvoted you! I found similar content that readers might be interested in:
https://www.youtube.com/watch?v=_tfvl27CwlA