Particle wave duality is one of those concepts in which the effective transition limit between both representations is really not that well understood I think.
It is similar to the transition between deterministic and statistical (quantum) many particle mechanics. I.e. when do entropy and thermodynamics really enter the picture, where is the effective limit and so on...
I mean some knowledge exists but it is sadly not very common in the literature :D
You are viewing a single comment's thread from:
You are right. Cases where one need to use one or the other are pretty clear. The issue is the rest where things are less clear and both could be equally used. I remember having read some time ago about some apparatus where according how they are tuned, we can either get a particle behavior, or a wave behavior or a mixed behavior. But I don't remember the details better. Sorry.
No it is well understood if you actually study quantum mechanics. The behavior of a subatomic "thing" is characterized by a wave function. The wave function gives rise to a probability distribution giving the probabilities of the "thing" interacting at various positions in space. The quantity that forms a wave is technically what is know as the probability amplitude - a quantity whose square magnitude gives the probability. That's why the "thing" behaves as a wave. However the "thing" also interacts at precise positions depositing a fixed quantity of energy, so in that sense it behaves as a particle.