This is such an awesome study! Imagine the implications of expanding the coding power of DNA by a factor of 9! The first thing I thought when you introduced 'alien DNA' was that it would be useless for an animal without the relevent transciption and translation mechanisms to process it to protein, but the fact the team managed to create these too is phenomenal!
When you say
However, these experiments were all performed with exogenous DNA that was not inserted in the bacterial genome.
Is this because they introduced DNA in plasmids, and not into the central genome of the bacteria?
I guess the next steps are moving that "alien DNA" into the bacterias central genome. From there someone will have to figure out how to make all this work in Eukaryotes with their increasingly complex and fickle DNA machinery!
I don't envy the team that tries to solve that puzzle!
Thanks for such an entertaining read!
Yes! Just the fact that replication and transcription of unnatural bases can occur without any modification to polymerases is already amazing, especially considering that the bases they use interact mostly through hydrophobic interactions and not hydrogen bongs like normal Watson-Crick pairs. Apparently, just using a normal tRNA with modified anti-codon was enough (they use the seryl-tRNA synthetase from E.Coli which apparently does not require codon/anti-codon interaction so tRNA loading was not an issue).
The DNA template was indeed a plasmid, I also wonder what would happen if you try the same in genomic DNA. I would instinctively say that it would be a mess but if replication and transcription work fine then maybe it would not be that bad in bacteria if you only modify ORFs and not promoters or regulatory elements (eukaryotes are another story though, I'm not sure this would ever be possible).
Glad you liked it, I enjoyed writing it :)
Thanks for elaborating and yeah, loved it :) Keep it coming :)